ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Y. F. Chen, R. J. Sheu, S. H. Jiang, J. N. Wang, U. T. Lin
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 343-350
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12306
Articles are hosted by Taylor and Francis Online.
Based on the Consistent Adjoint Driven Importance Sampling (CADIS) methodology, MAVRIC is a new computational sequence in the SCALE6 code package that is designed to perform efficient Monte Carlo simulation for a complicated and difficult shielding problem. This study aimed to evaluate the performance of MAVRIC with the latest cross-section library in calculating the surface dose rates of a realistic spent-fuel storage cask. Detailed dose rate profiles over the cask side and top surfaces were calculated, and the results were compared with our previous work using SAS4 and MCNP. In order to duplicate the same source model, the MAVRIC code has been modified to accommodate a user-defined axial source distribution. The comparison among the three codes was evaluated in terms of their accuracies and computational efficiencies. For the gamma-ray sources, the MAVRIC-calculated results are more accurate than SAS4 and consistent with those predicted by the continuous-energy MCNP calculations. Meanwhile, its computational efficiencies are comparable to the performance of the TORT-coupled MCNP calculations. For the fuel neutron source, the MAVRIC calculation with broad-group cross sections cannot give satisfactory result, and its computational performance is also a factor of [approximately]10 less efficient than that of TORT-coupled MCNP. With a fine-group cross-section library, MAVRIC can provide a better prediction but still underestimates the surface dose rates of the cask by 15 to 30%.