ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kenneth D. Jarman, Erin A. Miller, Richard S. Wittman, Christopher J. Gesh
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 326-334
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation | doi.org/10.13182/NT10-72
Articles are hosted by Taylor and Francis Online.
Locating illicit radiological sources using gamma-ray or neutron detection is a key challenge for both homeland security and nuclear nonproliferation. Localization methods using an array of detectors or a sequence of observations in time and space must provide rapid results while accounting for a dynamic attenuating environment. In the presence of significant attenuation and scatter, more extensive numerical transport calculations in place of the standard analytical approximations may be required to achieve accurate results. Numerical adjoints based on deterministic transport codes provide relatively efficient detector response calculations needed to determine the most likely location of a true source given a set of observed count rates. Probabilistic representations account for uncertainty in the source location resulting from uncertainties in detector responses and the potential for nonunique solutions. A Bayesian approach improves on previous likelihood methods for source localization by allowing the incorporation of all available information to help constrain solutions.We present an approach to localizing radiological sources that uses numerical adjoints and a Bayesian formulation and demonstrate the approach on two simple example scenarios. Results indicate accurate estimates of source locations. We briefly study the effect of neglecting the contribution of all scattered radiation in the adjoints, as analytical transport approximations do, for a case with moderately attenuating material between detectors and sources. The source location accuracy of the uncollided-only solutions appears to be significantly worse at the source strength considered here, suggesting that the higher physical fidelity that is provided by full numerical adjoint-based solutions may provide an advantage in operational settings.