ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Kenneth D. Jarman, Erin A. Miller, Richard S. Wittman, Christopher J. Gesh
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 326-334
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation | doi.org/10.13182/NT10-72
Articles are hosted by Taylor and Francis Online.
Locating illicit radiological sources using gamma-ray or neutron detection is a key challenge for both homeland security and nuclear nonproliferation. Localization methods using an array of detectors or a sequence of observations in time and space must provide rapid results while accounting for a dynamic attenuating environment. In the presence of significant attenuation and scatter, more extensive numerical transport calculations in place of the standard analytical approximations may be required to achieve accurate results. Numerical adjoints based on deterministic transport codes provide relatively efficient detector response calculations needed to determine the most likely location of a true source given a set of observed count rates. Probabilistic representations account for uncertainty in the source location resulting from uncertainties in detector responses and the potential for nonunique solutions. A Bayesian approach improves on previous likelihood methods for source localization by allowing the incorporation of all available information to help constrain solutions.We present an approach to localizing radiological sources that uses numerical adjoints and a Bayesian formulation and demonstrate the approach on two simple example scenarios. Results indicate accurate estimates of source locations. We briefly study the effect of neglecting the contribution of all scattered radiation in the adjoints, as analytical transport approximations do, for a case with moderately attenuating material between detectors and sources. The source location accuracy of the uncollided-only solutions appears to be significantly worse at the source strength considered here, suggesting that the higher physical fidelity that is provided by full numerical adjoint-based solutions may provide an advantage in operational settings.