ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Tim D. Bohm, S. T. Jackson, M. E. Sawan, P. P. H. Wilson
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 264-270
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12298
Articles are hosted by Taylor and Francis Online.
Researchers at the University of Wisconsin-Madison Fusion Technology Institute and Argonne National Laboratories have recently developed a computer-aided-design-based Monte Carlo code (DAG-MCNP5) to perform nuclear analysis of complex three-dimensional systems such as ITER. In this work, DAG-MCNP5-calculated results will be compared to native MCNP5-calculated results and to measured results for ITER-specific benchmark experiments in order to provide additional quality assurance for DAG-MCNP.Calculated results are compared for the bulk shield mock-up and the helium-cooled pebble bed (HCPB) breeder blanket mock-up, which utilize the 14-MeV Frascati Neutron Generator facility. Neutron flux was measured at different depths in these experimental mock-ups using activation foils that cover the neutron energy range of 0 to 14 MeV. Additionally, tritium production in Li2CO3 pellets was measured in the HCPB experiment.Results of the foil activation calculations for the bulk shielding experiment and the HCPB breeder experiment show agreement within statistical uncertainty for DAG-MCNP5 and native MCNP5. Calculated results for tritium production in the HCPB mock-up also agree within statistical uncertainty for the DAG-MCNP5 and native MCNP5 calculations. Timing results showed that DAG-MCNP5 is 5.3 times slower than native MCNP5 for the bulk shield mock-up. For the HCPB mock-up, DAG-MCNP5 is 4.8 times slower than native MCNP5.It is concluded that the close agreement of calculated foil activation and tritium production between DAG-MCNP5 and native MCNP5 in these complex and ITER-relevant geometries provides additional quality assurance for the DAG-MCNP5 code and the mcnp2cad tool used in this work.