ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Keith Searson, Fabrice Fleurot, Andrew Cooper, Pat Cowan
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 259-263
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12297
Articles are hosted by Taylor and Francis Online.
A computer-aided design (CAD) import and tracking system, OiNC, has been developed that is currently being incorporated into the MONK and MCBEND criticality and shielding codes. The system enables analysts to take advantage of the advanced geometry modeling capabilities provided by the solid CAD modelers Autodesk Inventor and Solidworks. Various tracking acceleration techniques are implemented in order to reduce calculation time, including the full or partial automatic conversion of the CAD model to constructive solid geometry (CSG) form. For the criticality benchmark model detailed here, the overall calculation run time for a CAD-based geometry was found to be just 14% longer than an equivalent text-based CSG model. OiNC uses analytical surface descriptions, with full NURBS support, avoiding the approximations and problems associated with meshing. However, meshed models can still be imported and tracked, enabling shielding and criticality calculations to be performed, for example, on impact simulated finite element models.