ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
A. Serikov, U. Fischer, D. Grosse, P. Spaeh, D. Strauss
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 238-250
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Photon and Neutron Transport and Shielding (DETERMINISTIC or Mc) | doi.org/10.13182/NT11-A12295
Articles are hosted by Taylor and Francis Online.
This paper presents an overview of the evolution of the radiation shielding calculations for the ITER upper port electron cyclotron heating (ECH) launcher performed over the last 6 yr at Karlsruhe Institute of Technology (KIT). The current advances at KIT in the development of the McCad program as an interface between a computer-aided-design (CAD) system and the Monte Carlo radiation transport codes Monte Carlo N-Particle (MCNP) Version 5 (MCNP5) and TRIPOLI-4 enable a substantial increase of neutronic calculation efficiency for the development of nuclear systems design. This work provides new results in the application of calculation techniques enhanced with the CAD-based radiation transport capabilities of McCad and with the inherent features of MCNP5 such as its variance-reduction techniques (VRTs) and mesh tallies. High-resolution mapping of the helium production distribution in the ITER location that was supposed to be rewelded was accomplished using the MCNP mesh tally. This mapping is important because the reweldability of irradiated steel is limited by the content of helium generated. In the ITER heterogeneous models with the possibility of radiation streaming effects resulting in hot spots, the need to obtain excellent results closely related to the original CAD model is an additional reason to use McCAD. The statistical errors associated with the mesh tally results were reduced by applying VRTs and by taking advantage of the MCNP5 message passing interface parallel computations on the JUROPA High Performance Computer for Fusion operated in the Juelich Supercomputer Centre at Forschungszentrum Juelich. The shielding calculations were supplemented with activation analyses of the ECH launcher irradiated materials performed by the FISPACT-2005 inventory code. The French system of radioactive waste (RW) management adopted by ITER was applied to the classification of the launcher's steel irradiated during the 20-yr Modified Design Requirements and Guidelines Level 1 (M-DRG1) ITER operational scenario. The masses of the launcher's different parts have been estimated in terms of the RW types.