ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Joel A. Kulesza
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 228-237
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12294
Articles are hosted by Taylor and Francis Online.
In the computational fluid dynamics analysis to determine the necessary cooling airflow rates in the reactor cavity of a nuclear power plant during operation, the heat generated in the sacrificial bioshield and adjacent components is a significant source term. Traditionally, a three-dimensional (3-D) flux synthesis method is used to calculate the heat generation rate in the bioshield for reactors with a cylindrical reactor cavity because there is minimal azimuthal variation. However, the AP1000™ reactor incorporates an octagonal reactor cavity design with 12 ex-core detectors, leading to potentially significant impacts on the azimuthal heat generation rate distribution. Therefore, it was of interest to benchmark the traditional flux synthesis method with full 3-D discrete ordinates methods. Because of an uncertainty in the amount of mesh refinement necessary to have confidence in the results, a sensitivity study on the mesh refinement was performed with a parallel 3-D discrete ordinates code. This allowed a comparison with an industry-standard serial 3-D discrete ordinates code in terms of both execution speed and calculated results.The results suggest that for angular positions where the flux synthesis method incorporates an axial model, there is relatively good agreement with 3-D methods (within ±20%). In areas remote from axial models, there are differences of up to a factor of 2 in a nonconservative direction. Furthermore, a recently developed parallel 3-D discrete ordinates radiation transport code was shown to produce results generally consistent with the industry-standard 3-D code used (within 2.5%). Finally, the parallel code completed its calculations in 10% of the time required by the serial code for an identically sized problem.