ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Mahmoud PourArsalan, Lawrence W. Townsend, Nathan A. Schwadron, Kamen Kozarev, Maher A. Dayeh, Mihir I. Desai
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 202-209
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12291
Articles are hosted by Taylor and Francis Online.
The Earth-Moon-Mars Radiation Environment Module (EMMREM) is a numerical model for characterizing the time-dependent radiation environment in the Earth-Moon-Mars and interplanetary space environments. In this work we demonstrate the capabilities of the module for performing analyses of time-dependent exposures from solar energetic particle (SEP) events near Earth and Mars by calculating time-dependent dose rates, dose equivalent rates, and accumulated dose and accumulated dose equivalents for surrogates of the skin and the blood forming organs (BFOs) of crew members shielded by as much as 10 g/cm2 of aluminum shielding for the January 15, 2005, SEP event. The motivation for the development of EMMREM is the need to better understand the radiation hazards in deep space and near Earth and other planetary bodies, in near real time in support of possible future space exploration by manned and unmanned spacecraft. Characterizing the radiation environment for different locations on and close to Earth for SEP events is fairly well developed. However, estimating the probable radiation environment near Mars and other locations throughout the solar system is not currently supported for SEP events. Such capability is critical for future human exploration of the Moon and Mars in the upcoming decades. The calculated doses for the skin and BFO surrogates are compared with the National Aeronautics and Space Administration's short-term permissible exposure limits.