ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Johannes M. Bauer, James C. Liu, Alyssa A. Prinz, Sayed H. Rokni
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 198-201
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Accelerators | doi.org/10.13182/NT11-A12290
Articles are hosted by Taylor and Francis Online.
The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory (SLAC) is currently working on increasing its stored current from originally 100 to 500 mA. SSRL worked with the SLAC Radiation Protection Department on mitigating the possible radiological hazards from these upgrades. This paper describes the related analyses, new safety systems, and beam tests. The top-off injection mode (injection with beamline stoppers open) is essential for operation at high currents. The radiological consequences of various situations were analyzed, a new Beam Containment System (BCS) was implemented, and radiation surveys were performed during tests. Since March 2010, all beamlines have been operating in top-off mode. Operation with higher beam currents was also analyzed for radiological hazards, and a new Beamline BCS was installed. The storage ring is now operating with 200 mA during user runs, and tests are ongoing with higher beam currents. Soon the power of the injection current will also be raised from 1.5 W at present to 5 W maximal.