ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
David P. Hartmangruber, Bojan Petrovic
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 187-197
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT10-165
Articles are hosted by Taylor and Francis Online.
IRIS is an advanced, smaller-power pressurized water reactor, with aggressive dose reduction objectives. Because of its integral configuration, IRIS has a thick downcomer region that significantly reduces the radiation field outside the reactor vessel, forming the technical basis for achieving the objectives. However, this feature also makes the shielding analysis very challenging. The goal of evaluating the dose rate distribution throughout the IRIS nuclear power plant and, in particular, in all accessible areas further amplifies the problem.The MAVRIC sequence of the SCALE6 code system was selected for this analysis. MAVRIC employs a hybrid deterministic-stochastic approach, with CADIS and Forward-CADIS methods being used to develop variance-reduction parameters for Monte Carlo simulations. MAVRIC was successfully applied to determine the dose rate distribution throughout a large portion of the IRIS nuclear power plant including the control room. The obtained results confirmed that the dose rate is below the set target limit in the relevant plant areas and, in particular, in the control room.