ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
A. Kargar, E. Ariesanti, D. S. McGregor
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 131-137
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Materials for Nuclear Systems | doi.org/10.13182/NT11-A12281
Articles are hosted by Taylor and Francis Online.
In this study, the charge collection efficiencies (CCEs) of a 7.8- × 7.8- × 15.6-mm3 CdZnTe Frisch collar detector and a 2.1- × 2.1- × 4.1-mm3 HgI2 Frisch collar detector were measured and compared. Two Frisch collar devices were designed and fabricated to have identical aspect ratios of 2.0 to maintain similar weighting potential distributions. Pulse-height spectra were acquired from both Frisch collar devices with a standard calibration gamma-ray source of 137Cs, and the results are presented. As known, the Frisch collar alters the weighting potential within the planar device and enhances the CCE distributions. Thus, the parameters affecting these distributions have great impact on the pulse-height spectrum. The device length and mobility-lifetime product have great impacts on CCE. Primarily, crystal (device) length L directly affects CCE because more charge carriers are trapped in longer devices with longer traveling distances. Alternatively, the better mobility-lifetime product of the charge carriers enhances CCE of the fabricated device. It is shown in this study that as a result of similarity in shape for both devices (equal aspect ratio), the weighting potential distributions resemble each other. However, as a result of the trapping effect (due to both length and ), the CCE profiles are not the same, and the CdZnTe detector shows more uniform response to gamma rays and, therefore, better spectroscopic performance (even with a longer device length), which is confirmed through CCE simulations. Finally, by applying the CCE model to the HgI2 Frisch collar device, the mobility-lifetime products e, h e, h of electrons and holes were estimated to be 0.0008 and 0.00003 cm2V-1 , respectively, for the HgI2 crystal.