ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
E. Ariesanti, A. Kargar, D. S. McGregor
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 124-130
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Materials for Nuclear Systems | doi.org/10.13182/NT11-A12280
Articles are hosted by Taylor and Francis Online.
Being a high-Z material, mercuric iodide (HgI2) has a relatively high gamma-ray absorption coefficient. Its low charge carrier mobilities, however, have somewhat hampered the interest in using this material as a room-temperature gamma-ray spectrometer. By using the Frisch collar technology, the influence of the low charge carrier can be significantly reduced. The growth of HgI2 by the Faile method in a horizontal furnace fortuitously produces tetragonal prismatic crystals. These crystals with appropriate dimensions can be fabricated into Frisch collar spectrometers. With the Frisch collar technology, 1.8% energy resolution for 662-keV gamma rays has been achieved.