ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Jang Guen Park, Chan Hyeong Kim, Chul Hee Min, Jong Hwi Jeong, Jong Bum Kim, Jinho Moon, Sung-Hee Jung
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 113-117
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation | doi.org/10.13182/NT175-113
Articles are hosted by Taylor and Francis Online.
In industrial-type single-photon-emission computed tomography (SPECT) systems, the use of relatively large detectors and collimators for effective detection of high-energy gammas significantly limits imaging performance, primarily because of insufficient measurement points. In the present study, a simple but very effective image-quality improvement method, the double-layer method, was tested. In this method, two layers of identical SPECT systems are employed in order to increase the number of measurement points and, thereby, improve the image quality. For experimentation, the two identical detector layers were arranged for 30 deg of rotation with respect to each other. The results showed that the double-layer method indeed significantly improves the image quality of the industrial SPECT system, substantially reducing errors in source size and location for both low-energy (99mTc) and high-energy (113mIn) gamma sources.