ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Edward J. Waller
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 89-92
Technical Note | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation | doi.org/10.13182/NT11-A12275
Articles are hosted by Taylor and Francis Online.
Recent nuclear weapons testing in the limit of low-yield detonations has underscored the need to ensure that radiation detection and monitoring equipment can adequately respond to these events. Testing and validating equipment in appropriate reference fields have become difficult since the closing of the NATO primary fission spectra reference at the Aberdeen Proving Ground Fast Burst Reactor facility post-9/11. A simple and low-cost device was designed to perform testing of commercial off-the-shelf neutron detection equipment to the expected spectral shape from a low-yield nuclear weapon. By enclosing an 241AmBe (,n) neutron source within a heavy water-moderated sphere, the general shape of a 1-kiloton standard fission weapon was generated at 1 m, valid between 100 and 2000 keV. The 1-m dose rate expected from this configuration is [approximately]2.16 × 10-10 Svh-1Bq-1 , which is less than one-half of the unshielded dose rate.