ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. Querol, S. Gallardo, J. Ródenas, G. Verdú
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 63-72
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12271
Articles are hosted by Taylor and Francis Online.
Quality control of mammography units is necessary to reduce the dose imparted to women as much as possible. Accurate characterization of the primary X-ray spectra is very useful for this purpose. Obtaining primary spectra normally involves the use of unfolding methods to be applied to pulse-height distributions (PHDs) measured in detector devices. In this work, the modified truncated singular value decomposition, the damped singular value decomposition, and the Tikhonov unfolding methods have been applied to several PHDs simulated with the Monte Carlo code MCNP5. The main goal of this paper is to test the capability of these unfolding methods to reproduce different primary spectra, corresponding to several high voltages and to the different anode materials molybdenum and rhodium. With this aim, an MCNP5 model has been developed to reproduce an actual experimental measurement including the X-ray focus, a Compton spectrometer, and a silicon detector. Quality parameters, such as the half-value layer, homogeneity factor, mean energy, and transmission curve, have been evaluated to see the effect of discrepancies observed between unfolded and theoretical spectra.