ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
K. Wong, B. Erdelyi
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 40-47
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12267
Articles are hosted by Taylor and Francis Online.
Proton computed tomography (pCT) has become a lively research field in medical imaging. Its importance lies in its ability to accurately locate the Bragg peak where the tumor is positioned for proton therapy treatment planning. The quality of the pCT image is primarily affected by the spatial resolution and relative electron density resolution. A measure of the spatial resolution is the amount of expected deviation of the actual proton paths from the theoretically derived paths based on the experimentally available data, the so-called most likely paths (MLPs). The MLPs are derived using the assumption that the object to be imaged is homogeneous water. Geant4 Monte Carlo simulations were used to simulate the actual proton paths through some inhomogeneous phantoms and were compared with MLP calculations. Statistical analyses were conducted to determine the spatial resolution of the protons in different phantoms as a function of inhomogeneity location, amount, and density.