ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
INL to host Center for Used Fuel Research
The Department of Energy’s Office of Nuclear Energy announced the establishment of the Center for Used Fuel Research (CUFR), to be hosted at the Idaho National Laboratory and focused on spent nuclear fuel performance, canister aging, and the fostering of innovation and collaboration.
According to the DOE, the CUFR is designed to be a national and international hub for applied research that supports and maintains compliance and advances public confidence in the safe storage and transportation of both commercial and DOE-managed spent fuel.
Clay A. Cooper, David L. Decker
Nuclear Technology | Volume 174 | Number 3 | June 2011 | Pages 452-459
Technical Paper | TOUGH2 Symposium / Radioactive Waste Management and Disposal | doi.org/10.13182/NT11-A11752
Articles are hosted by Taylor and Francis Online.
Nuclear rocket engine technology is being considered as a means of interplanetary vehicle propulsion for a manned mission to Mars. Significant technological research and development are required before nuclear-based rocket propulsion can be integrated into an interplanetary vehicle, including the firing of full-scale nuclear rocket engines in a test and evaluation facility. Testing of nuclear engines in the 1950s and 1960s was accomplished by directing engine exhaust gases into the atmosphere, a practice that is no longer acceptable. Testing nuclear rocket engines by injection of associated radioactive exhaust gases and water vapor into deep unsaturated zones may be a way to sequester radionuclides and will require comprehensive design of a nuclear engine test facility. We conducted numerical simulations to determine the ability of an unsaturated zone with the hydraulic properties of Yucca Flat alluvium at the Nevada National Security Site to contain gas-phase radionuclides. In these simulations, gas and water vapor (from water sprayed into the exhaust for cooling) were injected for two hours at a temperature of 600°C and with rates of 14.5 kg s-1 and 15 kg s-1 , respectively, in varying thicknesses of alluvium with an intrinsic permeability of 10-11 m2 and porosity of 0.35. These simulations suggest that following the test of an engine, gaseous radionuclides injected below 200 m will not migrate to the land surface. The simulations show that the gaseous/vapor injectate will cool and condense within several meters of the injection point, although there will be limited, if any, downward drainage of liquid. However, the nearly horizontal hydraulic groundwater gradient present in Yucca Flat should limit lateral migration of any condensate that may drain downward and reach the water table.