ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Janez Perko, Eef Weetjens
Nuclear Technology | Volume 174 | Number 3 | June 2011 | Pages 401-410
Technical Paper | TOUGH2 Symposium / Radioactive Waste Management and Disposal | doi.org/10.13182/NT11-A11748
Articles are hosted by Taylor and Francis Online.
Assessment of gas generation and transport is inevitable for evaluation of the safety of nuclear waste disposal in deep geological formations. The long-term safety of the geological disposal facility is guaranteed by several engineered and natural barriers. The reference disposal concept in Belgium consists of a concrete-based repository situated in Boom Clay, which is a low-permeability plastic clay. Hence, the mobility of gas and liquid within these barriers is very small and may lead, in combination with increased temperatures due to decay heat of the waste, to pressure buildup and the potential structural failure of barriers. The focus of this study is on coupling two-phase water and gas flow with a heat source, originating from the heat dissipating waste. The main gas production mechanism within the considered geological repository system is (anaerobic) corrosion of metal barriers, generating H2 gas. The corrosion process itself and therefore the intensity of the gas source is temperature dependent. Furthermore, the heat source is time dependent due to the decaying nature of the radioactive material. This property, in turn, makes the gas generation rate time dependent as well. The cases presented in this work couple variable gas generation with a time-variable heat source and are modeled with TOUGH2. Because of large uncertainties associated with the yet-uncharacterized engineered materials (e.g., concrete), two bounding material permeabilities with a span of two orders of magnitude are chosen for comparison. Results demonstrate that the peak pressures for the isothermal and nonisothermal cases do not differ considerably in the case of high-permeability buffer material. On the contrary, the peak pressures differ considerably for low-permeability material, which hinders the flow of water induced by thermal expansion of water with temperature increase. This peak pressure is not related to the gas-generation process and occurs a little earlier than the gas pressure peak, which is in this case comparable to the high-permeability case. Overall, this near-field analysis showed that the effect of pressure increase remains relatively localized and should not affect the structural integrity of the host formation. The behavior of the system is additionally refined by the implementation of temperature-dependent hydrogen solubility within the numerical code, which slightly modifies the transition to H2 gas phase.