ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Keni Zhang, Jean Croisé, Gerhard Mayer
Nuclear Technology | Volume 174 | Number 3 | June 2011 | Pages 364-374
Technical Paper | TOUGH2 Symposium / Radioactive Waste Management and Disposal | doi.org/10.13182/NT11-A11746
Articles are hosted by Taylor and Francis Online.
Significant quantities of hydrogen can be produced by the corrosion of metal components. It is necessary to forecast gas migration and pressure buildup in the context of deep geological radioactive waste disposal. One of the major problems in representing gas migration in a radioactive waste repository is that of simultaneously modeling all gas sources and complex transfer pathways constituted by the network of underground drifts and the surrounding low-permeability rock. In 2006, the French National Agency for Radioactive Waste Management launched an international multiphase flow simulation benchmark exercise for modeling such a two-phase (gas and liquid) flow system. The exercise was designed to compare the performance of the numerical methods being used to resolve the designed problems. This paper presents the results of test case 2 of the exercise completed by the authors. The three-dimensional model represents a fraction of a repository for long-lived radioactive waste in a clay rock. The model simulates ambient pressure and flow conditions (considering influence of site evacuation on the flow system) after placement of wastes, with full consideration of two-phase initial and boundary conditions. Isothermal conditions are assumed. Time-dependent gas sources are applied to the model. Since the natural environment is unable to evacuate the entire amount of hydrogen in a dissolved state, a free gas phase is formed within the disposal structures. The model is used to study the dissipation of those gases to determine their influence on the transient phases throughout the lifetime of the repository, and to investigate possible pressure buildup, which may introduce a risk of damage to the host rock. We use the model to investigate how the presence of gas in the repository influences the nature of water flow around the disposal structures and the resaturation (process of saturation increasing) transient processes after closure of the repository. The TOUGH2-MP code, a parallel multiphase flow simulator, has been adopted for this study.