ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Aku Itälä, Markus Olin
Nuclear Technology | Volume 174 | Number 3 | June 2011 | Pages 342-352
Technical Paper | TOUGH2 Symposium / Radioactive Waste Management and Disposal | doi.org/10.13182/NT11-A11744
Articles are hosted by Taylor and Francis Online.
Finnish spent nuclear fuel final disposal is planned to be based on the Kärnbränslesäkerhet 3-Vertical concept, which was originally planned for fractured crystalline bedrock. Within this concept, the role of the bentonite buffer is considered central. The aim of the study was to model the evolution of the final repository during the thermal phase (heat-generating period of spent fuel) when the bentonite is initially only partially saturated. There is an essential need to determine how temperature influences saturation and how both of these factors affect the chemistry of bentonite.In this study the Long-Term Test of Buffer Materials A2 parcel test at the Äspö hard rock laboratory in Sweden was modeled using TOUGHREACT code. The results focused on the following phenomena occurring in the bentonite: cation exchange, changes of bentonite pore water, mineral alterations, saturation, and pressure changes in bentonite buffer.The results show similarity with experimental data. However, the results are open to questions, and further study is needed to confirm the validity of the results. Differences between modeled and experimental results can be explained, for example, so that the experimental results are not from the fracture position as our one-dimensional model assumes.