ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
B. T. Rearden, M. L. Williams, M. A. Jessee, D. E. Mueller, D. A. Wiarda
Nuclear Technology | Volume 174 | Number 2 | May 2011 | Pages 236-288
Technical Paper | Special Issue on the SCALE Nuclear Analysis Code System / Radiation Protection | doi.org/10.13182/NT174-236
Articles are hosted by Taylor and Francis Online.
In SCALE 6, the Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) modules calculate the sensitivity of keff or reactivity differences to the neutron cross-section data on an energy-dependent, nuclide-reaction-specific basis. These sensitivity data are useful for uncertainty quantification, using the comprehensive neutron cross-section-covariance data in SCALE 6. Additional modules in SCALE 6 use the sensitivity and uncertainty data to produce correlation coefficients and other relational parameters that quantify the similarity of benchmark experiments to application systems for code validation purposes. Bias and bias uncertainties are quantified using parametric trending analysis or data adjustment techniques, providing detailed assessments of sources of biases and their uncertainties and quantifying gaps in experimental data available for validation. An example application of these methods is presented for a generic burnup credit cask model.