ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Ian C. Gauld, Georgeta Radulescu, Germina Ilas, Brian D. Murphy, Mark L. Williams, Dorothea Wiarda
Nuclear Technology | Volume 174 | Number 2 | May 2011 | Pages 169-195
Technical Paper | Special Issue on the SCALE Nuclear Analysis Code System / Fuel Cycle and Management | doi.org/10.13182/NT11-3
Articles are hosted by Taylor and Francis Online.
The calculation of fuel isotopic compositions is essential to support design, safety analysis, and licensing of many components of the nuclear fuel cycle - from reactor physics and severe accident analysis to back-end fuel cycle issues, including spent-fuel storage and transportation, reprocessing, and radioactive waste management. Versions of the ORIGEN code, developed by Oak Ridge National Laboratory, have been used worldwide for isotopic depletion and decay analysis for more than three decades. The supported version of ORIGEN, maintained as the depletion analysis module for SCALE 6, performs detailed time-dependent isotopic generation and depletion for 1946 nuclides for reactor fuel and activation analysis. Stand-alone ORIGEN calculations can be performed using cross-section libraries developed for a wide range of reactor types and fuel designs used worldwide, including light water reactors UO2 and MOX, CANDU, VVER 440 and 1000, RBMK, and graphite reactors. Alternatively, within SCALE 6, ORIGEN can be automatically coupled to two-dimensional discrete ordinates or three-dimensional Monte Carlo transport solvers that provide problem-dependent cross sections for use in the ORIGEN depletion calculation. The hybrid ability to function as either a stand-alone or coupled depletion code provides ORIGEN advanced capabilities to simulate a broad range of applications for various reactor systems. The nuclear data libraries in ORIGEN have been significantly improved recently, using modern ENDF/B nuclear data evaluations. The most recent developments in SCALE 6.1 include the addition of ENDF/B-VII decay data, energy-dependent fission yields, and fine-group ORIGEN neutron cross sections based on the JEFF-3.0/A special purpose activation files. Advanced methods and data for neutron and gamma source energy spectral analysis are also available in the current version of the code. The ORIGEN code and associated nuclear data libraries have been extensively validated against experimental data that include spent nuclear fuel isotopic assay data for actinides and fission products, radiation source spectra, and decay heat measurements.