ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Supathorn Phongikaroon, Steven D. Herrmann, Michael F. Simpson
Nuclear Technology | Volume 174 | Number 1 | April 2011 | Pages 85-93
Technical Paper | Reprocessing | doi.org/10.13182/NT174-85
Articles are hosted by Taylor and Francis Online.
In this study, a diffusion-based kinetic model essential for design and operational analysis of spent nuclear fuel reduction has been developed. The model considers the cathode side of the system to be rate limiting and deals with diffusion of lithium metal through the basket loaded with uranium oxide (UO2 or U3O8). Faraday's law was implemented into the model to observe the electrochemical effect on the model. Solutions with different conditions are developed, and detailed results are presented. These solutions were compared against experimental bench scale data. At high operating current conditions (I > 0.8 A), the model fits the data well. The fitting resulted in estimated effective lithium diffusion coefficients for high and low void fraction UO2 crushed fuels of 8.5 × 10-4 cm2/s and 2.2 × 10-4 cm2/s, respectively. The effective diffusion coefficient for U3O8 is estimated to be 8.6 × 10-4 cm2/s. In some experiments, a porous magnesium oxide basket was used for containing the U3O8. It was estimated that the lithium diffusion coefficient through this magnesia basket is 3.3 × 10-5 cm2/s.