ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
“The time is now” to advance U.S. nuclear—Part 1
The Nuclear Regulatory Commission is gearing up to tackle an influx of licensing requests and oversight of advanced nuclear reactor technology, especially small modular reactors.
Masaumi Nakahara, Tsutomu Koizumi, Kazunori Nomura
Nuclear Technology | Volume 174 | Number 1 | April 2011 | Pages 77-84
Technical Paper | Chemical Reprocessing | doi.org/10.13182/NT11-A11681
Articles are hosted by Taylor and Francis Online.
A crystal purification process consisting of sweating and melt filtration was developed to improve decontamination factors (DFs) of fission product impurities from uranyl nitrate hexahydrate (UNH) crystal recovered from a dissolver solution of irradiated fast reactor core fuel. Batch experiments on the sweating and melt filtration processes were carried out at 56 to 80°C. Although the DFs of solid impurities such as Cs and Ba remain the same in the sweating process, those of liquid impurities such as Zr, Nb, Ru, Ce, and Eu were 2.32, 2.40, 2.50, 2.45, and 2.60 at 60°C. On the other hand, the DF of Pu for the UNH crystal slightly increased to 1.25 at 60°C. Because Pu incorporated the UNH crystal in both the solid impurities such as Cs2Pu(NO3)6 and in the liquid impurities, Pu in the liquid fraction was removed by the sweating operation. Decontamination of liquid impurities was effective with sweating time and with a rise in sweating temperature. In the melt filtration process, 0.45- to 5.0-m-diam filters were used for the separation of the molten UNH crystal. The DF of Ba was approximately ten times as high as the crude crystal with 0.45- to 5.0-m-diam filters. The particle size of Pu and Cs formed as Cs2Pu(NO3)6 was quite small. As a proof of this, although the decontamination of Pu and Cs was not effective with a 5.0-m-diam filter, their DFs rose 2.7 times using a 0.45-m-diam filter.