ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Thea Energy releases preconceptual plans for Helios fusion power plant
Fusion technology company Thea Energy announced this week that it has completed the preconceptual design of its fusion power plant, called Helios. According to the company, Helios is “the first stellarator fusion power plant architecture that is realistic to build and operate with hardware that is available today, and that is tolerant to the rigors of manufacturing, construction, long-term operation, and maintenance of a commercial device.”
Masaumi Nakahara, Tsutomu Koizumi, Kazunori Nomura
Nuclear Technology | Volume 174 | Number 1 | April 2011 | Pages 77-84
Technical Paper | Chemical Reprocessing | doi.org/10.13182/NT11-A11681
Articles are hosted by Taylor and Francis Online.
A crystal purification process consisting of sweating and melt filtration was developed to improve decontamination factors (DFs) of fission product impurities from uranyl nitrate hexahydrate (UNH) crystal recovered from a dissolver solution of irradiated fast reactor core fuel. Batch experiments on the sweating and melt filtration processes were carried out at 56 to 80°C. Although the DFs of solid impurities such as Cs and Ba remain the same in the sweating process, those of liquid impurities such as Zr, Nb, Ru, Ce, and Eu were 2.32, 2.40, 2.50, 2.45, and 2.60 at 60°C. On the other hand, the DF of Pu for the UNH crystal slightly increased to 1.25 at 60°C. Because Pu incorporated the UNH crystal in both the solid impurities such as Cs2Pu(NO3)6 and in the liquid impurities, Pu in the liquid fraction was removed by the sweating operation. Decontamination of liquid impurities was effective with sweating time and with a rise in sweating temperature. In the melt filtration process, 0.45- to 5.0-m-diam filters were used for the separation of the molten UNH crystal. The DF of Ba was approximately ten times as high as the crude crystal with 0.45- to 5.0-m-diam filters. The particle size of Pu and Cs formed as Cs2Pu(NO3)6 was quite small. As a proof of this, although the decontamination of Pu and Cs was not effective with a 5.0-m-diam filter, their DFs rose 2.7 times using a 0.45-m-diam filter.