ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Byung-Gil Ahn, Hwan-Seo Park, In-Tae Kim, Han-Soo Lee
Nuclear Technology | Volume 173 | Number 3 | March 2011 | Pages 300-309
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT11-A11663
Articles are hosted by Taylor and Francis Online.
The waste generated from a pyrochemical process to recover uranium and transuranic elements has been one of the problematic wastes because of high volatility and low compatibility with silicate glass. For the minimization of final waste, an oxidative precipitation by sparging oxygen has been under development, and the waste containing rare earth oxides (REOs) and volatile salt is expected to be generated. This study intended to find a way to immobilize these kinds of wastes under the limitations of a processing temperature ([approximately]1200°C) and a waste loading ([approximately]20 wt%). From a series of consolidation experiments, it was induced that Ca-rich silicate glass is effective in consolidating the REOs at relatively low temperature. Based on this result, CaO-SiO2-P2O5 (CaPS) was designed to provide a way to control the volatility of waste and to avoid glass effects in the consolidation at a given temperature. By using a CaPS, REOs were consolidated, regardless of glass composition. At a high content of metal chlorides, CaPS can control the volatility up to 1200°C, but it has a low ability to immobilize alkali metal elements. For this, SiO2-Al2O3-P2O5 (SAP) was suggested to treat LiCl-KCl salt in precipitate. This composite can also control the volatility up to 1200°C, and it converted the REOs into monazite at 650°C, where the entire metal elements in chloride form are changed into relatively stable compounds. The leach test by the product consistency test-method A confirmed the immobilization ability of SAP for waste with a high content of metal chlorides. In conclusion, this study suggests the approach concept to treat a waste containing volatile compounds. For a lower content of metal chloride, CaPS are more favorable, and for a high content of metal chlorides, SAP is more effective to fabricate a wasteform for final disposal.