ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
David H. Meikrantz, Troy G. Garn, Jack D. Law, Lawrence L. Macaluso
Nuclear Technology | Volume 173 | Number 3 | March 2011 | Pages 289-299
Technical Paper | Chemical Reprocessing | doi.org/10.13182/NT11-A11662
Articles are hosted by Taylor and Francis Online.
Advanced designs of nuclear fuel recycling and radioactive waste treatment plants are expected to include more ambitious goals for solvent extraction-based separations, including higher separation efficiency, high-level-waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, annular centrifugal contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5-cm, model V-02; and 12.5-cm, model V-05, single-stage ACCs in a nonradioactive environment. The next logical step, the design and initial evaluation of remote-capable, pilot-scale ACCs for use in a "hot" or radioactive environment has been completed. This work continues the development of remote designs for ACCs that can process the large throughputs needed for future nuclear fuel recycling and radioactive waste treatment plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place (CIP) and drain connections, and a new solids removal collection chamber. A three-stage, 12.5-cm-diam rotor module has been constructed and is being evaluated for use in highly radioactive environments. This prototype assembly employs three standard CINC V-05 CIP units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain, and CIP. Hydraulic testing and functional checks were successfully conducted, and then the prototype was evaluated for remote handling and maintenance. Removal and replacement of the center position V-05R contactor in the three-stage assembly was demonstrated using an overhead rail mounted PaR manipulator. Initial evaluation indicates a viable new design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment. Replacement of a single stage via remote manipulators and tools is estimated to take [approximately]30 min, perhaps fast enough to support a contactor change without loss of process steady-state equilibrium. The design presented in this work is scalable to commercial ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 l/min.