ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Adam Davis, Donald J. Dudziak, Man-Sung Yim, David McNelis, H. Omar Wooten
Nuclear Technology | Volume 173 | Number 3 | March 2011 | Pages 270-288
Technical Paper | Radiation Protection | doi.org/10.13182/NT11-110
Articles are hosted by Taylor and Francis Online.
In radiation protection, photon buildup factors provide a convenient method for calculating dose and exposure response after various shielding configurations, as well as information about the behavior of radiation in these configurations. Though many situations call for multilayer shields, few databases and derived analytical formulas for photon buildup in multilayer shields exist. This research develops buildup factors and analytical fits to these data for slab-geometric, dual-layer shields composed of various materials. The photon buildup factors were calculated for monoenergetic photon sources incident on two-layer shields of various combinations of lead, polyethylene, aluminum, and stainless steel for thicknesses varying between 2 and 20 mean free paths using the Parallel Time Independent Sn (PARTISN) discrete ordinates code. The Gauss-Lobatto S100 quadrature was used with a 244-energy-group structure and coupled photon and electron cross sections. Data from PARTISN calculations were then benchmarked for representative cases using MCNP5, and fits to a new analytical formula were developed using Mathematica 6.0.