ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Constantine P. Tzanos, Maxim Popov, Fred Mendonca
Nuclear Technology | Volume 173 | Number 3 | March 2011 | Pages 239-250
Technical Paper | One-Phase Fluid Flow | doi.org/10.13182/NT11-A11659
Articles are hosted by Taylor and Francis Online.
To assess the accuracy of large eddy simulation (LES) predictions for a flow in a rod bundle, analyses were performed with different parameters of a constant-coefficient Smagorinsky LES model for a flow in a square-pitch rod bundle, and model predictions are compared with experimental data. The parameters considered are the grid structure, the value of the Smagorinsky constant, the damping of the eddy viscosity, and the size of the channel geometry. Because LES simulations are computationally very demanding, for adequately accurate predictions the grid structure needs to be well optimized in terms of cell size, aspect ratio, and cell orthogonality. The use of hanging nodes can significantly reduce the number of cells without a significant penalty on the accuracy of predictions. For this flow, the change in the value of the Smagorinsky constant from 0.14 to zero did not have a drastic effect on predictions. Although, overall, Lilly damping gave slightly better predictions than van Driest damping, both damping functions gave similar predictions. The LES predictions for the mean axial velocity, for the fluctuating velocity component in the main flow direction, and for the Reynolds stresses are in very good agreement with the experimental measurements. There is also good agreement between predictions and measurements for the wall shear stress, but there is a significant discrepancy between predictions and measurements for the fluctuating velocity components in the lateral directions (u and v).