ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jack D. Law, David H. Meikrantz, Troy G. Garn, Lawrence L. Macaluso
Nuclear Technology | Volume 173 | Number 2 | February 2011 | Pages 191-199
Technical Paper | High Level Waste | doi.org/10.13182/NT11-A11548
Articles are hosted by Taylor and Francis Online.
Advanced designs of spent nuclear fuel recycling processes and radioactive waste treatment processes are expected to include more ambitious goals for aqueous-based separations, including higher separation efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, annular centrifugal contactors are destined to play a more important role for such future processing schemes. Pilot-scale testing will be an integral part of development of many of these processes. An advanced design for remote maintenance of pilot-scale centrifugal contactors has been developed and a prototype module fabricated and tested for a commercially available pilot-scale centrifugal contactor (CINC V-02, 5-cm rotor diameter). Advanced design features include air-actuated clamps for holding the motor/rotor assembly in place, an integral electrical connection, upper flange O-rings, a welded bottom plate, a lifting bale, and guide pins. These design features will allow for rapid replacement of the motor/rotor assembly, which can be accomplished while maintaining process equilibrium in the operating contactors during replacement of a unit. This means that fluids in the operating contactors remain at equilibrium with respect to composition and that process solutions are ready to resume discharge when the contactor is replaced and feed solutions are restarted. Hydraulic testing of a three-stage prototype unit was also performed to verify that design changes did not impact performance of the centrifugal contactors. Details of the pilot-scale remote maintenance design, results of testing in a remote mock-up test facility, and results of hydraulic testing of the advanced design are provided.