ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Luciano Burgazzi
Nuclear Technology | Volume 173 | Number 2 | February 2011 | Pages 153-161
Technical Paper | Reactor Safety | doi.org/10.13182/NT11-A11544
Articles are hosted by Taylor and Francis Online.
This paper describes a modeling and analysis approach for reliability prediction based on degradation modeling, considering multiple degradation measures and with respect to the thermal-hydraulic passive systems.Previous research on the topic has drawn attention to the susceptibility of passive systems to several modes of failure. In fact, it has been recognized that a system may have, in addition to component mechanism failures, multiple degradation paths, so it is necessary to simultaneously consider multiple degradation measures. Also, many research efforts on degradation analysis were initiated by making assumptions about the degradation mechanism. In reality, often there is very limited understanding about the concerned degradation mechanisms together with their interdependencies.In this paper, an analysis procedure is developed to address this aspect. Simulated data have been used to illustrate the applicability of this approach. Results on the application of the methods to a simplified model of the passive residual heat transport system in water-cooled reactors is presented. It was verified that when the multiple degradation measures in a system are correlated, an incorrect independence assumption may overestimate the system reliability.