ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Yu Tang, Christopher Grandy, Ralph Seidensticker
Nuclear Technology | Volume 173 | Number 2 | February 2011 | Pages 135-152
Technical Paper | Fission Reactors | doi.org/10.13182/NT11-A11543
Articles are hosted by Taylor and Francis Online.
We present the results of a survey of the state of seismic isolation technology. The emphasis of the review is placed in the United States. The purpose of this survey was to provide an engineering basis for the use of seismic isolation in the design of nuclear power plants. In particular, the survey is focused on providing a basis for the design of advanced fast reactor (AFR) nuclear power plants. These AFR plants typically have components and piping that are thin walled as opposed to the thick-walled components and piping in light water reactor (LWR) plants. As a result the AFR plants do not have the adequate inherent strength to resist seismic loads that exists in the LWR plants. It is far more desirable, therefore, to reduce the seismic demand on the AFR plants than to require costly measures to strengthen the structures and components. It is believed that the use of seismic isolation is a viable and effective way to provide this reduction in seismic demand. Various types of seismic isolation systems and devices are reviewed along with their strengths and weaknesses. Descriptions of several U.S. seismically isolated buildings are presented. The results of actual performance of seismically isolated buildings are also presented, including representative measurements of accelerations in the structures when subjected to actual seismic events. It is concluded that the seismic isolation technology is well established and that the path forward leading to the use of this technology for AFR nuclear power plants is clear and achievable.