ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yu Tang, Christopher Grandy, Ralph Seidensticker
Nuclear Technology | Volume 173 | Number 2 | February 2011 | Pages 135-152
Technical Paper | Fission Reactors | doi.org/10.13182/NT11-A11543
Articles are hosted by Taylor and Francis Online.
We present the results of a survey of the state of seismic isolation technology. The emphasis of the review is placed in the United States. The purpose of this survey was to provide an engineering basis for the use of seismic isolation in the design of nuclear power plants. In particular, the survey is focused on providing a basis for the design of advanced fast reactor (AFR) nuclear power plants. These AFR plants typically have components and piping that are thin walled as opposed to the thick-walled components and piping in light water reactor (LWR) plants. As a result the AFR plants do not have the adequate inherent strength to resist seismic loads that exists in the LWR plants. It is far more desirable, therefore, to reduce the seismic demand on the AFR plants than to require costly measures to strengthen the structures and components. It is believed that the use of seismic isolation is a viable and effective way to provide this reduction in seismic demand. Various types of seismic isolation systems and devices are reviewed along with their strengths and weaknesses. Descriptions of several U.S. seismically isolated buildings are presented. The results of actual performance of seismically isolated buildings are also presented, including representative measurements of accelerations in the structures when subjected to actual seismic events. It is concluded that the seismic isolation technology is well established and that the path forward leading to the use of this technology for AFR nuclear power plants is clear and achievable.