ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Samuel E. Bays, J. Stephen Herring, James Tulenko
Nuclear Technology | Volume 173 | Number 2 | February 2011 | Pages 115-134
Technical Paper | Fission Reactors | doi.org/10.13182/NT11-A11542
Articles are hosted by Taylor and Francis Online.
An axially heterogeneous sodium-cooled fast reactor design is developed for converting minor actinide waste isotopes into plutonium fuel. The reactor design incorporates zirconium hydride moderating rods in an axial blanket above the active core. The blanket design traps the active core's axial leakage for the purpose of transmuting 241Am into 238Pu. This 238Pu is then co-recycled with the spent driver fuel to make new driver fuel. Because 238Pu is significantly more fissionable than 241Am in a fast neutron spectrum, the fissile worth of the initial minor actinide material is upgraded by its preconditioning via transmutation in the axial targets. Because the 241Am neutron capture worth is significantly greater in a moderated epithermal spectrum than the fast spectrum, the axial targets serve as a neutron trap that recovers some of the axial leakage lost by the active core.A low transuranic conversion ratio is achieved by a degree of core flattening that increases axial leakage. Unlike a traditional "pancake" design, neutron leakage is recovered by the axial target/blanket system. This heterogeneous core design is constrained to have sodium void and Doppler reactivity worth similar to that of an equivalent homogeneous design. Contrary to a homogeneous design, concentrating minor actinides (MAs) in an axial blanket mitigates the problem of above-threshold multiplication during sodium voiding. Because minor actinides are irradiated only once in the axial target region, elemental partitioning of the minor actinides from plutonium is not required. This fact enables the use of metal targets with pyroprocessing. After reprocessing, the target's newly bred 238Pu and remaining unburned MAs become the feedstock for the next batch of driver fuel.