ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
“The time is now” to advance U.S. nuclear—Part 1
The Nuclear Regulatory Commission is gearing up to tackle an influx of licensing requests and oversight of advanced nuclear reactor technology, especially small modular reactors.
J-F. Villard, M. Schyns
Nuclear Technology | Volume 173 | Number 1 | January 2011 | Pages 86-97
Technical Paper | NPIC&HMIT Special / Radiation Measurements and Instrumentation | doi.org/10.13182/NT11-A11487
Articles are hosted by Taylor and Francis Online.
Optimizing the life cycle of nuclear systems under safety constraints requires high-performance experimental programs to reduce uncertainties on margins and limits. In addition to improvement in modeling and simulation, innovation in instrumentation is crucial for analytical and integral experiments conducted in research reactors.Significant efforts have been made recently to improve in-pile instrumentation for the benefit of material testing reactors. The quality of nuclear research programs obviously relies on an excellent knowledge of their experimental environment, which constantly calls for better online determination of neutron and gamma flux. But the combination of continuously increasing scientific requirements and new experimental domains - brought, for example, by Generation-IV programs - also necessitates major innovations for in-pile measurements of temperature, dimensions, pressure, or chemical analysis in innovative mediums.To face these challenges, the CEA (French Nuclear Energy Commission) and the SCK.CEN (Belgian Nuclear Research Centre) have combined their efforts and now share common developments through a Joint Instrumentation Laboratory.Significant advances have thus been obtained in the field of in-pile measurements, on one hand by the improvement of existing measurement methods (for example, a unique fast neutron flux measurement system using fission chambers with 242Pu deposit and a specific online data processing has been developed), and on the other hand by the introduction in research reactors of original techniques such as optical dimensional measurements or acoustical fission gas release measurements.