ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
J. A. Antonino-Daviu, M. Riera-Guasp, M. Pineda-Sanchez, R. Puche-Panadero, R. B. Pérez, P. Jover-Rodriguez, A. Arkkio
Nuclear Technology | Volume 173 | Number 1 | January 2011 | Pages 26-34
Technical Paper | NPIC&HMIT Special / Nuclear Plant Operations and Control | doi.org/10.13182/NT11-A11481
Articles are hosted by Taylor and Francis Online.
The work carried out by the authors consists of applying a modern time-frequency decomposition (TFD) tool, the Hilbert-Huang Transform (HHT), to the diagnosis and the evaluation of electromechanical faults in induction machines. These machines are widely spread nowadays, being involved in many industrial processes as well as in power generation installations such as nuclear plants. The core of the proposed methodology is the analysis of the current demanded by the stator winding of the machine during its connection process known as startup transient. Once the current is analyzed, characteristic patterns caused by the evolution of certain components created by the corresponding faults are identified; this evolution is due to the dependence of these fault-related components on the slip s, a quantity varying during a direct startup transient from 1 to near 0. In the present paper, the HHT is applied to the diagnosis of two different faults: rotor bar breakages and mixed eccentricities. In comparison with other TFD tools, the HHT provides certain advantages that are discussed in the work. The validity of the approach is proven through several experimental tests on real machines with different sizes and characteristics. The results show the potential of the methodology for reliable fault diagnosis and for correct discrimination between the different electromechanical failures.