ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Steven A. Arndt, Alan Kuritzky
Nuclear Technology | Volume 173 | Number 1 | January 2011 | Pages 2-7
Technical Paper | NPIC&HMIT Special / Nuclear Plant Operations and Control | doi.org/10.13182/NT11-A11478
Articles are hosted by Taylor and Francis Online.
For the past several years, the U.S. Nuclear Regulatory Commission and its contractors have been actively engaged in research to determine the capabilities and limitations of the state of the art of digital systems risk and reliability modeling. This program was developed to assess the capabilities of various modeling methods and to develop regulatory acceptance criteria for the use of digital system risk and reliability modeling in risk-informing digital system reviews. The program investigated both traditional and advanced modeling methods for the evaluation of digital system risk and reliability in the context of including these methods in current generation probabilistic risk assessments (PRAs). The methods investigated included traditional event tree/fault tree analysis, Markov modeling, and dynamic flow graph methodology. As part of the investigation into the capabilities of these methods, we have also reviewed the availability, capability, and practicality of the needed supporting data and analysis methods, including failure mode identification, data generation methods, and uncertainty analysis. The review indicated that for some digital systems traditional PRA modeling methods may be appropriate but that a number of potential issues exist that must be carefully evaluated in modeling these systems. Both the traditional and advanced modeling methods review found that the order of component failures can be important and that simulation either as part of the reliability model or as part of the supporting analysis is needed to determine the effects of combinations of component failures and the timing of digital system failures. Finally, the research showed that better data and models of fault-tolerant features of digital systems and software are needed to support more complete and accurate modeling of digital instrumentation and control for use in nuclear power plant PRAs.