ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Behrooz Khorsandi, Jonathan Kulisek, Thomas E. Blue, Don Miller, Jon Baeslack, Steve Stone
Nuclear Technology | Volume 172 | Number 3 | December 2010 | Pages 295-301
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT10-A10938
Articles are hosted by Taylor and Francis Online.
Silicon carbide (SiC) is a promising semiconductor material for use in solid-state radiation detectors. SiC's wide bandgap makes it an appropriate semiconductor for high-temperature applications. Because of the annealing process that occurs at temperatures above 150°C for SiC, SiC semiconductors may function in a radiation environment for longer periods of time at elevated temperatures than at room temperature. Unlike thermal annealing effects that can act to improve the electrical characteristics of SiC, fast neutrons create displacement damage defects in SiC Schottky diodes through scattering and thus rapidly degrade the electrical properties of the SiC diodes.We irradiated SiC Schottky diodes at the Ohio State University Research Reactor at room temperature with neutrons for displacement damage doses (Dd's) ranging from 7.6 × 1010 to 3.8 × 1011 MeV/g. After irradiation, we annealed the diodes, at either 175 or 300°C. We measured the SiC diodes' forward bias resistances at different steps of the experiments. To perform the experiments and study the results meaningfully, we performed a full factorial design of experiments with two factors: Dd and annealing temperature. The Dd factor had five levels of treatment, and the temperature had three levels of treatment. We did one-way and two-way analysis of variance to understand which factor is more dominant and whether or not the interaction effects are significant. It was determined that for Dd up to 2.3 × 1011 MeV/g the fractional damage recovery decreases with increasing Dd, but that Dd is not a significant factor affecting further changes in damage recovery for Dd's ranging from 2.3 × 1011 to 3.8 × 1011 MeV/g when the annealing temperature varies between 175 and 300°C. For high Dd (greater than 2.3 × 1011 MeV/g) neutron irradiations, the annealing temperature significantly affects the damage recovery.