ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Byung-Ho Lee, Yang-Hyun Koo, Han-Soo Kim, Jae-Yong Oh, Young-Woo Lee, Dong-Seong Sohn, Wolfgang Wiesenack
Nuclear Technology | Volume 172 | Number 3 | December 2010 | Pages 246-254
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT10-A10933
Articles are hosted by Taylor and Francis Online.
Attrition-milling technology for fabricating mixed oxide (MOX) fuel was developed to mix the plutonium in UO2 fuels as homogeneously as possible. The fabricated MOX fuels were instrumented with temperature and pressure gauges that enabled one to measure the fuel temperature and rod internal pressure online. An irradiation test in the Halden reactor was performed to investigate the in-pile behavior of the fabricated MOX fuel. The irradiation of 1020 effective full-power days was successfully accomplished with good integrity of the test fuel rods. The rod average burnup reached [approximately]50 MWd/kg HM, and the measured fuel centerline temperature was [approximately]1000°C for the MOX fuels. A significant fission gas release was observed due to the high power level. The online measured in-pile performance data of the two attrition-milled MOX fuel rods were analyzed and compared with the fuel performance code COSMOS. COSMOS simulated the fuel centerline temperature and rod internal pressure for both MOX fuel rods. The analysis by COSMOS showed good agreement with the online measured in-pile behavior of MOX fuel.