ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
L. Ammirabile, A. Bieliauskas, A. Bujan, B. Toth, G. Gyenes, J. Dienstbier, L. Herranz, J. Fontanet, N. Reinke, A. Rizoiu, J. Jancovic
Nuclear Technology | Volume 172 | Number 2 | November 2010 | Pages 220-229
Technical Note | Reactor Safety | doi.org/10.13182/NT10-A10907
Articles are hosted by Taylor and Francis Online.
This paper presents an overview of the activities carried out in the framework of the SARNET project by the CIEMAT, INR, JRC/IE, GRS, UJV, and VUJE partners involved in the validation of ASTEC on fission product (FP) release and transport experiments simulating severe accident conditions in the reactor circuit and containment.These activities were mainly devoted to the analysis of the Phébus experiments, FPT0, FPT1, and FPT2, which provided fundamental reference data for the severe accident research. The ELSA, SOPHAEROS, CPA, and IODE modules were used for FP release from the bundle, transport in the circuit, containment thermal hydraulics and aerosol behavior, and iodine behavior in containment, respectively. Studies on aerosol behavior in the STORM experiments and iodine behavior in the ThAI experiments are also summarized.The paper describes not only the results of validation of some stand-alone or several coupled code modules but also the results of first integral calculations, when all the relevant modules of the ASTEC code were used to model the FP release and transport. In the integral calculations, no boundary conditions are to be defined by the code users for most of the code modules, but only at such interfaces were the boundary conditions applied in the experiment. The integral calculation allows more objective judgment about the combined uncertainties of the calculated results.Together with overview of the progress in the validation of the main ASTEC modules, this paper also points out what needs to be improved in the modeling of future ASTEC V2 code versions.