ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Jacques Vlassenbroeck, Anis Bousbia Salah, Andrea Bucalossi
Nuclear Technology | Volume 172 | Number 2 | November 2010 | Pages 179-188
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT09-106
Articles are hosted by Taylor and Francis Online.
This paper presents assessment results for the natural circulation interruption (NCI) phenomenon during the cooldown phase in a nuclear pressurized water reactor. This phenomenon could take place because of several circumstances, such as an asymmetric cooldown after the loss of the forced primary flow. Under NCI conditions, the homogeneous boration of the reactor coolant system (RCS) and the connection of the RCS to the residual heat removal system could be hindered. Moreover, at very low or no primary flow rates and an operating safety injection system, a pressurized thermal shock could occur in the reactor vessel due to cold fluid stratification in the loops. It is therefore important to understand the cause of loop flow stagnation and to derive accordingly the appropriate operator actions to avoid such a phenomenon.The main goal of the current study is to assess the effect of a cooldown strategy upon the single-phase NCI occurrence. For this purpose, two scenarios with asymmetric cooling between the reactor cooling loops were investigated: The first one concerns a feedwater line break combined with a loss of offsite power (LOOP), while the second one is limited to the LOOP (or any other transient leading to the loss of the forced primary flow). The analyses were carried out using the best-estimate thermal-hydraulic system code CATHARE 2/V2.5_1mod8.1, developed by Commissariat à l'Energie Atomique, Electricité de France, AREVA, and Institut de Radioprotection et de Sûreté Nucléaire. The calculation results mainly emphasize the effect of the cooldown rate and the opening strategy of the main steam atmospheric discharge valve upon the occurrence of the NCI phenomenon.