ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jacques Vlassenbroeck, Anis Bousbia Salah, Andrea Bucalossi
Nuclear Technology | Volume 172 | Number 2 | November 2010 | Pages 179-188
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT09-106
Articles are hosted by Taylor and Francis Online.
This paper presents assessment results for the natural circulation interruption (NCI) phenomenon during the cooldown phase in a nuclear pressurized water reactor. This phenomenon could take place because of several circumstances, such as an asymmetric cooldown after the loss of the forced primary flow. Under NCI conditions, the homogeneous boration of the reactor coolant system (RCS) and the connection of the RCS to the residual heat removal system could be hindered. Moreover, at very low or no primary flow rates and an operating safety injection system, a pressurized thermal shock could occur in the reactor vessel due to cold fluid stratification in the loops. It is therefore important to understand the cause of loop flow stagnation and to derive accordingly the appropriate operator actions to avoid such a phenomenon.The main goal of the current study is to assess the effect of a cooldown strategy upon the single-phase NCI occurrence. For this purpose, two scenarios with asymmetric cooling between the reactor cooling loops were investigated: The first one concerns a feedwater line break combined with a loss of offsite power (LOOP), while the second one is limited to the LOOP (or any other transient leading to the loss of the forced primary flow). The analyses were carried out using the best-estimate thermal-hydraulic system code CATHARE 2/V2.5_1mod8.1, developed by Commissariat à l'Energie Atomique, Electricité de France, AREVA, and Institut de Radioprotection et de Sûreté Nucléaire. The calculation results mainly emphasize the effect of the cooldown rate and the opening strategy of the main steam atmospheric discharge valve upon the occurrence of the NCI phenomenon.