ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Sadao Uchikawa, Tsutomu Okubo, Yoshihiro Nakano
Nuclear Technology | Volume 172 | Number 2 | November 2010 | Pages 132-142
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT10-A10900
Articles are hosted by Taylor and Francis Online.
The FLWR is a boiling water reactor type with a core consisting of hexagonal-shaped fuel assemblies with a triangular-lattice fuel rod configuration, which has been proposed in order to ensure a sustainable energy supply in the future based on well-established light water reactor technologies. This paper proposes a new concept of fuel assembly design named FLWR/MIX. The first stage of FLWR is designed to conserve plutonium effectively with a fissile plutonium conversion ratio of around 1.0, keeping negative void reactivity characteristics. Enriched UO2 fuel rods are arranged in the peripheral region of the assembly, surrounding the mixed oxide (MOX) fuel rods in the central region. Performance evaluation shows that the FLWR/MIX concept is effective for controlling the void reactivity characteristics in the tight-lattice fuel rod configuration and is promising under the framework of the UO2 and MOX fuel technologies and related infrastructures that have been established for the current LWR-MOX utilization.