ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
E. Dumonteil, T. Courau
Nuclear Technology | Volume 172 | Number 2 | November 2010 | Pages 120-131
Technical Paper | Reactor Safety | doi.org/10.13182/NT10-A10899
Articles are hosted by Taylor and Francis Online.
Typical dimensions of large neutronic systems are often two orders of magnitude greater than the mean free path of the neutrons. Such high dominance ratio systems represent a particularly challenging issue when performing Monte Carlo criticality simulations. As a matter of fact, these simulations are contaminated by a cycle-to-cycle correlation that strongly slows down the flux convergence. In this paper, we will first discuss the link between the dominance ratio and the cycle-to-cycle correlations that are responsible for the poor flux convergence. Then, we will present a new and original technique to assess the dominance ratio of a given Monte Carlo simulation. It consists of fitting the relaxation process of the neutron field after an initial excitation from a fission source with a Dirac delta function shape. Having showed that these flux convergence issues are dominance ratio driven, we will then propose the use of an "independent replicas" approach to deal with the underprediction bias in statistics. The different theoretical points presented in this paper will be verified on a pin cell test case simulated with the Monte Carlo code TRIPOLI4. Additional results based on a three-dimensional pressurized water reactor core calculation are provided to confirm the reliability of the fitting technique described.