ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Frigyes Reisch
Nuclear Technology | Volume 172 | Number 2 | November 2010 | Pages 101-107
Technical Paper | Fission Reactors | doi.org/10.13182/NT10-A10897
Articles are hosted by Taylor and Francis Online.
Some 400 boiling water reactors (BWRs) and pressurized water reactors (PWRs) have been in operation for several decades. The presented concept, the high pressure boiling water reactor (HP-BWR), combines the best parts and omits the troublesome components of traditional BWRs and PWRs by taking into consideration the experiences gained during their operation.One of the major benefits of the HP-BWR is that safety is improved. The design utilizes gravity-operated control rods, and there is a large space for the cross-formed control rods between fuel boxes. The bottom of the reactor vessel is smooth and without penetrations. All the pipe connections to the reactor vessel are well above the top of the reactor core, and core spray is not needed. Additionally, internal circulation pumps are used.The HP-BWR concept is also environmentally friendly: Improved thermal efficiency is achieved by feeding the turbine with [approximately]340°C (15 MPa) steam instead of [approximately]285°C (7 MPa), and there is less warm water release to the recipient and less uranium consumption per produced kWh, resulting in the production of less waste.Finally, the HP-BWR is cost effective and simple, operating in direct cycle mode with no need for complicated steam generators. Moisture separators and steam dryers are placed inside the reactor vessel, and additional separators and dryers can be installed inside or outside the containment. Well-proved simple dry containment or wet containment can be used.In more than half a century, an extensive regulatory licensing experience has been built from traditional BWRs and PWRs. The HP-BWR is a developed, high-performance successor of those conventional designs. Therefore, it can be expected that licensing can be accomplished in a reasonable time.Several utilities are supporting manufacturers to study concepts for future reactors. It is likely that an application to one or more electrical power companies for financial support by a manufacturer to make a detailed feasibility study of the HP-BWR would be positively treated. This could be the next step to the implementation of the HP-BWR.