ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Raymond K. Maynard, Tushar K. Ghosh, Robert V. Tompson, Dabir S. Viswanath, Sudarshan K. Loyalka
Nuclear Technology | Volume 172 | Number 1 | October 2010 | Pages 88-100
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT10-6
Articles are hosted by Taylor and Francis Online.
An experimental system was constructed in accordance with the standard ASTM C835-06 to measure the total hemispherical emittance (emissivity) of structural materials of interest in very high temperature reactor (VHTR) systems. First, data were acquired for 304 stainless steel as well as for oxidized and unoxidized nickel, and good reproducibility and agreement with the literature was found. Emissivity of Hastelloy X was then measured under different conditions that included (a) "as received" (original sample) from the supplier, (b) with increased surface roughness, (c) oxidized, and (d) graphite coated. Measurements were made over a wide range of temperatures. Hastelloy X, as received from the supplier, was cleaned before additional roughening of the surface and coating with graphite. The emissivity of the original samples (cleaned after received) varied from [approximately]0.18 to 0.28 in the temperature range of 473 to 1498 K. The apparent emissivity increased only slightly as the roughness of the surface increased (without corrections for the increased surface area due to the increased surface roughness). When Hastelloy X was coated with graphite or was oxidized, however, its emissivity was observed to increase substantially. With a deposited graphite layer on the Hastelloy, increases from 0.2 to 0.53 at 473 K and from 0.25 to 0.6 at 1473 K were observed - a finding that has strong favorable safety implications in terms of decay heat removal in postaccident VHTR environments. Initial oxidation of Hastelloy X surfaces was observed to notably increase the emissivity of the Hastelloy X but was not observed to progress significantly beyond the initial oxidation even with more prolonged exposure. Since there is likely to be initial surface oxidation of any Hastelloy X used in the construction of VHTRs, this represents an essentially neutral finding in terms of the safety implications in postaccident VHTR environments.