ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. J. Mokry, P. L. Kirillov, I. L. Pioro, Y. K. Gospodinov
Nuclear Technology | Volume 172 | Number 1 | October 2010 | Pages 60-70
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT10-A10882
Articles are hosted by Taylor and Francis Online.
This paper presents selected results on heat transfer to supercritical water flowing upward in a 4-m-long vertical bare tube. Supercritical water heat transfer data were obtained at pressures of [approximately]24 MPa, mass fluxes of 200 to 1500 kg/m2s, heat fluxes up to 874 kW/m2 , and inlet temperatures from 320 to 460°C for several combinations of wall and bulk-fluid temperatures that were below, at, or above the pseudocritical temperatures.In general, the experiments confirmed that there are three heat transfer regimes for forced-convection heat transfer to water flowing inside tubes at supercritical pressures: (a) normal heat transfer regime characterized in general with heat transfer coefficients (HTCs) similar to those of subcritical convective heat transfer far from the critical region, which are calculated according to Dittus-Boelter-type correlations; (b) deteriorated heat transfer (DHT) regime with lower values of HTC and hence higher values of wall temperature within some part of a test section compared to those of the normal heat transfer regime; and (c) improved heat transfer regime with higher values of HTC and hence lower values of wall temperature within some part of a test section compared to those of the normal heat transfer regime.These new heat transfer data are applicable as a reference dataset for future comparison with supercritical water bundle data and for a verification of scaling parameters between water and modeling fluids.Also, these HTC data were compared to those calculated with the original Dittus-Boelter and modified Bishop et al. correlations. The comparison showed that the modified Bishop et al. correlation (i.e., the Bishop et al. correlation with the constant proposed by Kirillov et al.), which uses the cross-sectional averaged Prandtl number, represents HTC profiles more correctly along the heated length of the tube than the Dittus-Boelter correlation. In general, the modified Bishop et al. correlation shows good agreement with the experimental HTCs outside the pseudocritical region; however, it underpredicts the experimental HTCs within the pseudocritical region. The Dittus-Boelter correlation can also predict experimental HTCs outside the pseudocritical region but deviates significantly from experimental data within the pseudocritical region by up to four times.A reason for this deviation is that the Nusselt number in the Dittus-Boelter correlation and corresponding HTC values closely follow the regular Prandtl number (i.e., based on data from thermophysical properties tables), which in turn closely follows the peak in specific heat within the pseudocritical region. However, experimental HTC values show just a moderate increase within the pseudocritical region possibly due to significant variations of fluid temperature within the tube cross section. In this case, the bulk-fluid temperature might not be the best characteristic temperature at which all thermophysical properties should be evaluated. That is why the cross-sectional averaged Prandtl number is used in many supercritical heat transfer correlations instead of the regular one.A simple empirical correlation was proposed for calculating heat flux at the starting point of the DHT regime. However, it should be noted that both these correlations, i.e., the Dittus-Boelter and modified Bishop et al. correlations, cannot accurately predict HTCs within the DHT regime.