ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
C. M. Sommer, W. M. Stacey, B. Petrovic
Nuclear Technology | Volume 172 | Number 1 | October 2010 | Pages 48-59
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT10-A10881
Articles are hosted by Taylor and Francis Online.
A fuel cycle analysis was performed for the SABR transmutation reactor concept, using the ERANOS fast reactor physics code. SABR is a sodium-cooled, transuranic (TRU)-Zr-fueled, subcritical fast reactor driven by a tokamak fusion neutron source. Three different four-batch reprocessing fuel cycles, in which all the TRUs from spent nuclear fuel discharged from light water reactors are fissioned to >90% (by recycling four times), was examined. The total fuel residence time in the reactor was limited in these three cycles by a radiation damage limit (100, 200, or 300 displacements per atom) to the cladding material. In the fourth cycle the fuel residence time was determined by trying to achieve 90% burnup in a once-through cycle without reprocessing.