ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yung-Zun Cho, Gil-Ho Park, Han-Su Lee, In-Tae Kim, Dae-Seok Han
Nuclear Technology | Volume 171 | Number 3 | September 2010 | Pages 325-334
Technical Paper | Pyro 08 Special / Reprocessing | doi.org/10.13182/NT09-7
Articles are hosted by Taylor and Francis Online.
As an alternative to conventional Group I and II separation methods (such as adding a chemical agent and ion exchange), melt crystallization processes, zone freezing, and layer melt crystallization were tested for the separation (or concentration) of cesium and strontium fission products in a LiCl waste salt generated from an electrolytic reduction process of a spent oxide fuel. In these melt crystallization processes, impurities (CsCl and SrCl2) are concentrated in a small fraction of the LiCl salt by the solubility difference between the melt phase and the crystal phase. As experimental variables, initial molten salt temperature, crucible rising velocity in the zone freezing case, and cooling air flow rate in the layer crystallization case were used. In the zone freezing process, although the operating time is long (1.7 mm/h of crucible rising velocity) when assuming a LiCl salt reuse rate of 90 wt%, >90% separation efficiency for both CsCl and SrCl2 was shown. In the layer crystallization process, the crystal growth rate strongly affects the crystal structure and therefore the separation efficiency. At a 25 to 30 [script l]/min cooling air flow rate, 700 to 710°C initial molten salt temperature, and <5 g/min crystal growth rate, the separation efficiency of both CsCl and SrCl2 exceeded 90% by the layer crystallization process, assuming a LiCl salt reuse rate of 90 wt%.