ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Shelly X. Li, Steven D. Herrmann, Michael F. Simpson
Nuclear Technology | Volume 171 | Number 3 | September 2010 | Pages 292-299
Technical Paper | Pyro 08 Special / Reprocessing | doi.org/10.13182/NT10-A10864
Articles are hosted by Taylor and Francis Online.
The results of a recently reported series of bench-scale actinide recovery experiments with liquid cadmium cathodes (LCCs) are subjected to a more detailed analysis in this paper. It is suggested that separation efficiency (SE), not separation factor (SF), should be used to assess the effectiveness of an LCC to separate actinides from rare earth (RE) elements. The common definition of SF for any pair of actinide and RE elements in the molten salt/liquid Cd system is the ratio of their distribution coefficients, which are measured under equilibrium conditions. The definition of SE is broader than that of SF. For any pair of actinide and RE elements in the molten salt/liquid Cd system, SE is the ratio of their distribution coefficients, such as SEPu-U = DPu/DU, where DPu and DU are measured at either equilibrium or nonequilibrium conditions. The relationship of SE with SF is linear and can be expressed as SEPu-U = DPu/DU and DPu = SFPu-UDU + b. When DPu and DU are measured under equilibrium conditions, SE is equal to SF.The physical or chemical meaning of the intercept b is not clear. From a mathematical point of view, the absolute values of b reveal the differences between the measured DPu/DU or SE and SF. The negative values of b indicate that the SE measurement results are smaller than the associated SF. The values of b may be used to evaluate the SE of LCC on electrochemically recovered actinides from fission product elements. An electrochemical model was developed to investigate the mechanism of RE contamination of the actinides collected by the LCC. It was confirmed that REs were electrochemically transported into the Cd phase. A more negative LCC voltage has a stronger impact on the quantities of REs transported into the Cd than those of the actinides.