ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Robert O. Hoover, Supathorn Phongikaroon, Michael F. Simpson, Shelly X. Li, Tae-Sic Yoo
Nuclear Technology | Volume 171 | Number 3 | September 2010 | Pages 276-284
Technical Paper | Pyro 08 Special / Reprocessing | doi.org/10.13182/NT10-2A
Articles are hosted by Taylor and Francis Online.
The electrochemical processing of spent metallic nuclear fuel has been demonstrated by and is currently in operation at the Idaho National Laboratory (INL). At the heart of this process is the Mark-IV electrorefiner (ER). This process involves the anodic dissolution of spent nuclear fuel into a molten salt electrolyte along with a simultaneous deposition of pure uranium on a solid cathode. This allows the fission products to be separated from the fuel and processed into an engineered waste form. A one-dimensional model of the Mark-IV ER has begun to be developed. The computations thus far have modeled the dissolution of the spent nuclear fuel at the anode taking into account uranium (U3+), plutonium (Pu3+), and zirconium (Zr4+). Uranium and plutonium are the two most important elements in the system, whereas zirconium is the most active of the noble metals. The model shows that plutonium is quickly exhausted from the anode, followed by dissolution of primarily uranium, along with small amounts of zirconium. The total anode potential as calculated by the model has been compared to experimental data sets provided by INL. The anode potential has been shown to match the experimental values quite well with root-mean-square (rms) values of 2.27 and 3.83% for two different data sets, where rms values closer to zero denote better fit.