ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Yoshiharu Sakamura, Takashi Omori
Nuclear Technology | Volume 171 | Number 3 | September 2010 | Pages 266-275
Technical Paper | Pyro 08 Special / Reprocessing | doi.org/10.13182/NT10-A10861
Articles are hosted by Taylor and Francis Online.
Two series of pyrochemical reprocessing tests for oxide fuels, consisting of pretreatment, electrolytic reduction, and electrorefining processes, were conducted using [approximately]100 g of UO2. In the pretreatment process, UO2 pellets of the starting material were oxidized into U3O8 powder, which simulated fuel decladding by voloxidation. Then, UO2 sinter with a porosity of 30 to 38% was fabricated from the U3O8 powder. Two cathode baskets charged with [approximately]100 g of the UO2 sinter were prepared, and two electrolytic reduction tests were carried out in a LiCl-Li2O electrolyte at 650°C. The results suggested that the reduction to uranium metal could be completed within 10 h with the current efficiency >62%. It was verified that the porous UO2 sinter was of great advantage to the electrolytic reduction process. In the subsequent electrorefining process, the reduction products were charged in two anode baskets, and electrolysis was carried out in a LiCl-KCl-UCl3 electrolyte at 500°C. Within 8 h, most of the uranium metal was anodically dissolved into the electrolyte with the current efficiency >88%. Dendritic uranium metal was collected on a stainless steel cathode. Consequently, it was demonstrated that a refined uranium metal could be produced from UO2 pellets with a high degree of efficiency.