ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yoshiharu Sakamura, Takashi Omori
Nuclear Technology | Volume 171 | Number 3 | September 2010 | Pages 266-275
Technical Paper | Pyro 08 Special / Reprocessing | doi.org/10.13182/NT10-A10861
Articles are hosted by Taylor and Francis Online.
Two series of pyrochemical reprocessing tests for oxide fuels, consisting of pretreatment, electrolytic reduction, and electrorefining processes, were conducted using [approximately]100 g of UO2. In the pretreatment process, UO2 pellets of the starting material were oxidized into U3O8 powder, which simulated fuel decladding by voloxidation. Then, UO2 sinter with a porosity of 30 to 38% was fabricated from the U3O8 powder. Two cathode baskets charged with [approximately]100 g of the UO2 sinter were prepared, and two electrolytic reduction tests were carried out in a LiCl-Li2O electrolyte at 650°C. The results suggested that the reduction to uranium metal could be completed within 10 h with the current efficiency >62%. It was verified that the porous UO2 sinter was of great advantage to the electrolytic reduction process. In the subsequent electrorefining process, the reduction products were charged in two anode baskets, and electrolysis was carried out in a LiCl-KCl-UCl3 electrolyte at 500°C. Within 8 h, most of the uranium metal was anodically dissolved into the electrolyte with the current efficiency >88%. Dendritic uranium metal was collected on a stainless steel cathode. Consequently, it was demonstrated that a refined uranium metal could be produced from UO2 pellets with a high degree of efficiency.