ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Byung Heung Park, Ho Hee Lee, Won Myung Choung, Jin-Mok Hur, Chung-Seok Seo
Nuclear Technology | Volume 171 | Number 3 | September 2010 | Pages 232-246
Technical Paper | Pyro 08 Special / Reprocessing | doi.org/10.13182/NT10-A10859
Articles are hosted by Taylor and Francis Online.
The Advanced Spent Fuel Conditioning Process (ACP) has been proposed and developed by the Korea Atomic Energy Research Institute (KAERI) to treat oxide spent fuels (SFs) from light water reactors to reduce the volume, heat load, and radiotoxicity of processed SFs. In the ACP, an electrochemical reduction process has been developed, and an electroreducer with a maximum 20 kg/batch scale has been installed in the KAERI ACP facility. In this study, electrochemical reduction runs were carried out with 10 kg/batch of SIMFUEL at 923 K under current controlled conditions.The electrochemical reduction processes adopted LiCl molten salt as the electrolyte, and initially, 3.0 or 4.9 wt% of Li2O was dissolved to increase the oxygen ion activity in this work. A porous MgO basket was used to contain the powder-type test fuels; the basket and fuels along with a metal conductor as the current lead comprise a packed bed reactor where reduction takes place. During the three runs of reduction, the Li2O concentration was decreased with the applied current, and it was found that Ar bubbling in the bulk phase accelerated the depletion rate. Alkali and alkaline earth metal elements from the test fuels had dissolved and accumulated in the molten salt. The reduced metal was recovered after the runs, and sampled products exhibited >90% reduction yields with respect to their positions in the MgO basket. In addition to the experimental study, a three-dimensional model was developed to analyze respective phases in a reactor by using commercial tools. Streamlines of the fluids, the temperature distribution, and the oxygen partial pressure were obtained for the gas phase in motion, and the potential field calculation was carried out to reveal that most of the potential was applied to the cathode side because of the low electrical conductivities of the constituents.