ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
P. S. Remya Devi, Shreeram Joshi, Rakesh Verma, A. V. R. Reddy, A. M. Lali, L. M. Gantayet
Nuclear Technology | Volume 171 | Number 2 | August 2010 | Pages 220-227
Technical Paper | Radioisotopes | doi.org/10.13182/NT10-A10784
Articles are hosted by Taylor and Francis Online.
The feasibility of using ion-exchange resins to separate cobalt and antimony from zirconium in acid solutions was investigated. The distribution coefficients of zirconium, cobalt, and antimony on strong cation and anion exchangers in HCl and oxalic acid media were determined. The mass effect of zirconium on the distribution coefficients of cobalt and antimony was studied. The isotherm for zirconium was obtained in HCl solution. The distribution coefficient and isotherm data were used to develop ion-exchange processes for separation of cobalt and antimony from zirconium in the linear and nonlinear regions of the isotherm. A decontamination factor of more than 103 was achieved in a single ion-exchange cycle with respect to both cobalt and antimony. Two cycles of ion exchange will bring down the activity to acceptable levels for processing of irradiated zirconium as well as achieve a significant reduction in the waste volume. This is the first paper on separation of 60Co and 125Sb from zirconium for radioactive waste management.